A Survey of FPGA Based Neural Network Accelerator
نویسندگان
چکیده
Recent researches on neural network have shown great advantage in computer vision over traditional algorithms based on handcrafted features and models. Neural network is now widely adopted in regions like image, speech and video recognition. But the great computation and storage complexity of neural network based algorithms poses great difficulty on its application. CPU platforms are hard to offer enough computation capacity. GPU platforms are the first choice for neural network process because of its high computation capacity and easy to use development frameworks. On the other hand, FPGA based neural network accelerator is becoming a research topic. Because specific designed hardware is the next possible solution to surpass GPU in speed and energy efficiency. Various FPGA based accelerator designs have been proposed with software and hardware optimization techniques to achieve high speed and energy efficiency. In this paper, we give an overview of previous work on neural network accelerators based on FPGA and summarize the main techniques used. Investigation from software to hardware, from circuit level to system level is carried out to complete analysis of FPGA based neural network accelerator design and serves as a guide to future work.
منابع مشابه
A 7.663-TOPS 8.2-W Energy-efficient FPGA Accelerator for Binary Convolutional Neural Networks
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this paper, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a ...
متن کاملA Large-Scale Spiking Neural Network Accelerator for FPGA Systems
Spiking neural networks (SNN) aim to mimic membrane potential dynamics of biological neurons. They have been used widely in neuromorphic applications and neuroscience modeling studies. We design a parallel SNN accelerator for producing large-scale cortical simulation targeting an off-theshelf Field-Programmable Gate Array (FPGA)-based system. The accelerator parallelizes synaptic processing wit...
متن کاملDesign Space Exploration of FPGA-Based Deep Convolutional Neural Networks
Deep Convolutional Neural Networks (DCNN) have proven to be very effective in many pattern recognition applications, such as image classification and speech recognition. Due to their computational complexity, DCNNs demand implementations that utilize custom hardware accelerators to meet performance and energy-efficiency constraints. Leverages all sources of parallelism in DCNNs, in this paper w...
متن کاملA Design Methodology for Efficient Implementation of Deconvolutional Neural Networks on an FPGA
In recent years deep learning algorithms have shown extremely high performance on machine learning tasks such as image classification and speech recognition. In support of such applications, various FPGA accelerator architectures have been proposed for convolutional neural networks (CNNs) that enable high performance for classification tasks at lower power than CPU and GPU processors. However, ...
متن کاملA Comparative Analysis of Fuzzy ART Neural Network Implementations: The Advantages of Reconfigurable Computing
This paper analyzes the performance differences found between software and hardware/sofware implementations of a reformulated Fuzzy ART neural network algorithm. This reformulated algorithm is a solution for a real time radar signal clustering problem. The software implementations run on a 50MHz TMS320C40 DSP, and the hardware/sofware implementation runs on the same DSP for its software part, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.08934 شماره
صفحات -
تاریخ انتشار 2017